The generator matrix

 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  0  1  1  1  1  X  1  1  1  X  1  X  X  0  1  3  1
 0  X  0  0 2X X+3  X 2X+3 2X  6  3 X+3 X+3 2X+3 2X  3 X+6 2X+3  X X+3  X 2X  6 2X+6  0 X+3 2X+3  X  X  3  3  6 2X  3 2X+6 2X 2X+6  X X+3 2X+3 2X+6 X+3 X+3 2X+3  0  0  3  0 2X+3  X  X X+6  3  3  0 2X 2X+6  6  3 X+3 2X+6 X+3  X  X 2X+6  X 2X+6
 0  0  X 2X  6 2X+3  X X+3 2X+6 2X+3  0 2X+3  6 2X  6  X  X X+6 2X  0 X+6 2X 2X+3 X+6 X+6  0  3 2X+3  X  0 2X+3  6 X+6  X  3 X+6 2X+6 X+6 2X  6 2X  3 2X+6  X 2X 2X+6  3  6  0  6 2X+3 X+3 2X+3 X+6  X 2X+6 2X+6 X+6  3  3 X+3  3 X+6  0  6 X+6 2X+6
 0  0  0  6  0  0  0  0  0  0  3  6  3  6  3  3  6  3  3  6  3  3  3  6  6  3  6  3  3  6  6  0  3  6  3  6  3  0  6  6  3  6  0  0  0  3  3  6  0  0  0  6  0  0  3  0  0  0  6  3  3  6  0  0  6  3  6

generates a code of length 67 over Z9[X]/(X^2+3,3X) who�s minimum homogenous weight is 127.

Homogenous weight enumerator: w(x)=1x^0+198x^127+342x^128+112x^129+396x^130+516x^131+518x^132+810x^133+810x^134+906x^135+786x^136+552x^137+138x^138+90x^139+84x^140+22x^141+54x^142+36x^143+36x^145+78x^146+2x^147+36x^148+12x^149+18x^151+6x^154+2x^180

The gray image is a code over GF(3) with n=603, k=8 and d=381.
This code was found by Heurico 1.16 in 3.25 seconds.